Research Areas

Computational Organic Chemistry: Asymmetric Organocatalysis

Asymmetric catalysis remains one of the most challenging topics in contemporary organic chemistryWe utilize the mechanistic information from these studies for the rational design and development of new metal-free catalysts in silicoWe have active projects in the area of general base catalysis and H-bonding catalysis by bifunctional ureas/thioureas catalysis. 

Previous Mechanistic Studies

Non- covalent Interactions

Non-covalent interactions are  involved in many biological processes in which large molecules bind specifically but transiently to one another . These interactions also heavily influence drug design, design of materials (particularly for self-assembly), and, in general, the synthesis of many organic molecules. Several non covalent interactions has been described such as: halogen bonds, chalcogen bonds, cation-π, etc. I am actively involved in the study of the nature of hydrogen bonds and other weak interactions such as chalcogen or pnicogen bonds, and their implications in chemical and biological systems by means of MO calculations and the analysis of the electron density.

π-π Stacking Interactions

ChemPhysChem, 2016, 17, 395

Anion Transport

J. Chem. Inf. Model, 2019, 59, 5, 2212

Regium Bond vs Hydrogen bond

Front Cover. ChemPhysChem, 2019, 20, 1